Metal-organic frameworks with precisely designed interior for carbon dioxide capture in the presence of water.
نویسندگان
چکیده
The selective capture of carbon dioxide in the presence of water is an outstanding challenge. Here, we show that the interior of IRMOF-74-III can be covalently functionalized with primary amine (IRMOF-74-III-CH2NH2) and used for the selective capture of CO2 in 65% relative humidity. This study encompasses the synthesis, structural characterization, gas adsorption, and CO2 capture properties of variously functionalized IRMOF-74-III compounds (IRMOF-74-III-CH3, -NH2, -CH2NHBoc, -CH2NMeBoc, -CH2NH2, and -CH2NHMe). Cross-polarization magic angle spinning (13)C NMR spectra showed that CO2 binds chemically to IRMOF-74-III-CH2NH2 and -CH2NHMe to make carbamic species. Carbon dioxide isotherms and breakthrough experiments show that IRMOF-74-III-CH2NH2 is especially efficient at taking up CO2 (3.2 mmol of CO2 per gram at 800 Torr) and, more significantly, removing CO2 from wet nitrogen gas streams with breakthrough time of 610 ± 10 s g(-1) and full preservation of the IRMOF structure.
منابع مشابه
Carbon Dioxide Capture on Metal-organic Frameworks with Amide-decorated Pores
CO2 is the main greenhouse gas emitted from the combustion of fossil fuels and is considered a threat in the context of global warming. Carbon capture and storage (CCS) schemes embody a group of technologies for the capture of CO2 from power plants, followed by compression, transport, and permanent storage. Key advances in recent years include the further development of ne...
متن کاملThe role of metal–organic frameworks in a carbon-neutral energy cycle
1 Around 86% of all energy used globally comes from burning fossil fuels1, generating 35 billion tons of carbon dioxide annually2. The continuing reliance on fossil fuels by developed countries3 and the increasing demand for energy by emerging countries4 make the emission of carbon dioxide into the atmosphere a serious global problem. This has provided impetus for finding alternative energy fro...
متن کاملCarbon dioxide sensitivity of zeolitic imidazolate frameworks.
Zeolitic imidazolate frameworks of zinc, cobalt, and cadmium, including the framework ZIF-8 commercially sold as Basolite Z1200, exhibit surprising sensitivity to carbon dioxide under mild conditions. The frameworks chemically react with CO2 in the presence of moisture or liquid water to form carbonates. This effect, which has been previously not reported in metal-organic framework chemistry, p...
متن کاملMicroporous metal-organic framework with potential for carbon dioxide capture at ambient conditions.
Carbon dioxide capture and separation are important industrial processes that allow the use of carbon dioxide for the production of a range of chemical products and materials, and to minimize the effects of carbon dioxide emission. Porous metal-organic frameworks are promising materials to achieve such separations and to replace current technologies, which use aqueous solvents to chemically abs...
متن کاملCarbon dioxide capture in metal-organic frameworks.
Efforts to utilize metal-organic frameworks, a new class of materials exhibiting high surface areas, tunable pore dimensions, and adjustable surface functionality, for CO2 capture will be presented. Open metal coordination sites on the framework surface can deliver a high CO2 loading capacity at low pressures. However, additional criteria such as water stability and the selective binding of CO2...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of the American Chemical Society
دوره 136 25 شماره
صفحات -
تاریخ انتشار 2014